skip to main content


Search for: All records

Creators/Authors contains: "Weygand, J. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Abstract

    On 04 December 2021, a total solar eclipse occurred over west Antarctica. Nearly an hour beforehand, a geomagnetic substorm onset was observed in the northern hemisphere. Eclipses are suggested to influence magnetosphere‐ionosphere (MI) coupling dynamics by altering the conductivity structure of the ionosphere by reducing photoionization. This sudden and dramatic change in conductivity is not only likely to alter global MI coupling, but it may also introduce a variety of localized instabilities that appear in both hemispheres. Global navigation satellite system (GNSS) based observations of the total electron content (TEC) in the southern high latitude ionosphere during the December 2021 eclipse show signs of wave activity coincident with the eclipse peak totality. Ground magnetic observations in the same region show similar activity, and our analysis suggest that these observations are due to an “eclipse effect” rather than the prior substorm. We present the first multi‐point interhemispheric study of a total south polar eclipse with local TEC observational context in support of this conclusion.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    We investigate the relation of fast flows at the inner edge of the plasma sheet to the onset of auroral expansion. Recent work suggests that nearly all expansions are an instability triggered by an auroral streamer from far out in the magnetotail. We investigate an 8‐hr interval of activity on 14 March 2008 using ground magnetometer and all‐sky camera data to determine the onset times of six substorm expansions. We compare these times with Time History of Events and Macroscale Interactions during Substorms observations of plasma flow and magnetic field. We show that every expansion followed the arrival of a fast flow and dipolarization event at the inner edge of the plasma sheet. To relate the aurora to flows, we develop procedures for removing fixed lights, the moving Moon and its reflection, and contamination due to scattered moonlight. We scan movies of enhanced images for auroral streamers. Three onsets were tentatively associated with streamers. For two, the apparent source was very close to the growth phase arc mapping close to Earth. For one, an onset occurred in the recovery phase of an earlier substorm after a double oval had formed. For this one, the end of an N‐S streamer stopped about 2° north of the breakup arc. For the remaining three expansions, no streamers were associated with the onsets. Most substorms exhibit N‐S streamers in the recovery phase. These usually cannot be associated with fast flows. Either fast flows in the growth phase do not produce streamers or they make streamers that require significant image enhancement.

     
    more » « less
  5. Abstract

    To understand magnetosphere‐ionosphere conditions that result in thermal emission velocity enhancement (STEVE) and subauroral ion drifts (SAID) during the substorm recovery phase, we present substorm aurora, particle injection, and current systems during two STEVE events. Those events are compared to substorm events with similar strength but without STEVE. We found that the substorm surge and intense upward currents for the events with STEVE reach the dusk, while those for the non‐STEVE substorms are localized around midnight. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations show that location of particle injection and fast plasma sheet flows for the STEVE events also shifts duskward. Electron injection is stronger and ion injection is weaker for the STEVE events compared to the non‐STEVE events. SAID are measured by Super Dual Auroral Radar Network during the STEVE events, but the non‐STEVE events only showed latitudinally wide subauroral polarization streams without SAID. To interpret the observations, Rice Convection Model (RCM) simulations with injection at premidnight and midnight have been conducted. The simulations successfully explain the stronger electron injection, weaker ion injection, and formation of SAID for injection at premidnight, because injected electrons reach the premidnight inner magnetosphere and form a narrower separation between the ion and electron inner boundaries. We suggest that substorms and particle injections extending far duskward away from midnight offer a condition for creating STEVE and SAID due to stronger electron injection to premidnight. The THEMIS all‐sky imager network identified the east‐west length of the STEVE arc to be ~1900 km (~2.5 h magnetic local time) and the duration to be 1–1.5 h.

     
    more » « less
  6. Abstract

    The extreme substorm event on 5 April 2010 (THEMIS AL = −2,700 nT, called supersubstorm) was investigated to examine its driving processes, the aurora current system responsible for the supersubstorm, and the magnetosphere‐ionosphere‐thermosphere (M‐I‐T) responses. An interplanetary shock created shock aurora, but the shock was not a direct driver of the supersubstorm onset. Instead, the shock with a large southward IMF strengthened the growth phase with substantially larger ionosphere currents, more rapid equatorward motion of the auroral oval, larger ionosphere conductance, and more elevated magnetotail pressure than those for the growth phase of classical substorms. The auroral brightening at the supersubstorm onset was small, but the expansion phase had multistep enhancements of unusually large auroral brightenings and electrojets. The largest activity was an extremely large poleward boundary intensification (PBI) and subsequent auroral streamer, which started ~20 min after the substorm auroral onset during a steady southward IMFBzand elevated dynamic pressure. Those were associated with a substorm current wedge (SCW), plasma sheet flow, relativistic particle injection and precipitation down to the D‐region, total electron content (TEC), conductance, and neutral wind in the thermosphere, all of which were unusually large compared to classical substorms. The SCW did not extend over the entire nightside auroral activity but was localized azimuthally to a few 100 km in the ionosphere around the PBI and streamer. These results reveal the importance of localized magnetotail reconnection for releasing large energy accumulation that can affect geosynchronous satellites and produce the extreme M‐I‐T responses.

     
    more » « less